2,748 research outputs found

    Inner privacy of conscious experiences and quantum information

    Get PDF
    The human mind is constituted by inner, subjective, private, first-person conscious experiences that cannot be measured with physical devices or observed from an external, objective, public, third-person perspective. The qualitative, phenomenal nature of conscious experiences also cannot be communicated to others in the form of a message composed of classical bits of information. Because in a classical world everything physical is observable and communicable, it is a daunting task to explain how an empirically unobservable, incommunicable consciousness could have any physical substrates such as neurons composed of biochemical molecules, water, and electrolytes. The challenges encountered by classical physics are exemplified by a number of thought experiments including the inverted qualia argument, the private language argument, the beetle in the box argument and the knowledge argument. These thought experiments, however, do not imply that our consciousness is nonphysical and our introspective conscious testimonies are untrustworthy. The principles of classical physics have been superseded by modern quantum physics, which contains two fundamentally different kinds of physical objects: unobservable quantum state vectors, which define what physically exists, and quantum operators (observables), which define what can physically be observed. Identifying consciousness with the unobservable quantum information contained by quantum physical brain states allows for application of quantum information theorems to resolve possible paradoxes created by the inner privacy of conscious experiences, and explains how the observable brain is constructed by accessible bits of classical information that are bound by Holevo's theorem and extracted from the physically existing quantum brain upon measurement with physical devices

    BVR photometry of the resolved dwarf galaxy Ho IX

    Full text link
    We present BVR CCD photometry down to limiting magnitude B=23.5 mag for 232 starlike objects and 11 diffuse objects in a 5.4' x 5.4' field of Ho IX. The galaxy is a gas-rich irregular dwarf galaxy possibly very close to M 81, which makes it especially interesting in the context of the evolution of satellite galaxies and the accretion of dwarf galaxies. Investigations of Ho IX were hampered by relatively large contradictions in the magnitude scale between earlier studies. With our new photometry we resolved these discrepancies. The color magnitude diagram (CMD) of Ho IX is fairly typical of a star-forming dwarf irregular, consistent with earlier results. Distance estimates from our new CMD are consistent with Ho IX being very close to M 81 and therefore being a definite member of the M 81 group, apparently in very close physical proximity to M 81.Comment: 9 pages, 8 figures, uses aa.cls, A&A in pres

    SNARE proteins as molecular masters of interneuronal communication

    Get PDF
    In the beginning of the 20th century the groundbreaking work\ud of Ramon y Cajal firmly established the neuron doctrine, according to which neurons are the basic structural and functional units of the nervous system. Von Weldeyer coined the term “neuron” in 1891, but the huge leap forward in\ud neuroscience was due to Cajal’s meticulous microscopic observations of brain sections stained with an improved version of Golgi’s la reazione nera (black reaction). The latter improvement of Golgi’s technique made it possible to visualize the arborizations of single neurons that were “colored brownish black even to their finest branchlets, standing out with unsurpassable clarity upon a transparent yellow background. All was sharp as a sketch with Chinese ink”. The high quality of both the visualization of individual nerve cells and the work performed on studying the anatomy of the central nervous system lead Ramon y Cajal to the conclusion that axons output the nervous impulses to the dendrites or the soma of other target neurons

    New approach in the treatment of ophthalmic neovascular disorders: using fusion protein aflibercept

    Get PDF
    The aim of this review is to appraise the usage of a newly approved anti-vascular endothelial growth factor (anti-VEGF) fusion protein, aflibercept, in ocular neovascular disorders such as diabetic retinopathy and age-related macular degeneration. Aflibercept is a soluble fusion protein, which combines ligand-binding elements taken from the extracellular domains of VEGF receptors 1 and 2 fused to the Fc portion of IgG. This protein contains all human amino acid sequences, which minimizes the risk for immunogenicity in human patients. In this short review we investigate the available literature and data from clinical studies on the efficacy, pharmaceutical and pharmacological properties of aflibercept, and identify its possible advantages over commercially available anti-VEGF drugs.Biomedical Reviews 2014; 25: 59-65

    Model turbulent floods with the Smagorinski large eddy closure

    Full text link
    Floods, tides and tsunamis are turbulent, yet conventional models are based upon depth averaging inviscid irrotational flow equations. We propose to change the base of such modelling to the Smagorinksi large eddy closure for turbulence in order to appropriately match the underlying fluid dynamics. Our approach allows for large changes in fluid depth to cater for extreme inundations. The key to the analysis underlying the approach is to choose surface and bed boundary conditions that accommodate a constant turbulent shear as a nearly neutral mode. Analysis supported by slow manifold theory then constructs a model for the coupled dynamics of the fluid depth and the mean turbulent lateral velocity. The model resolves the internal turbulent shear in the flow and thus may be used in further work to rationally predict erosion and transport in turbulent floods
    • …
    corecore